首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   11篇
  国内免费   6篇
测绘学   2篇
大气科学   35篇
地球物理   58篇
地质学   109篇
海洋学   17篇
天文学   7篇
自然地理   26篇
  2023年   1篇
  2021年   5篇
  2020年   8篇
  2019年   6篇
  2018年   8篇
  2017年   3篇
  2016年   14篇
  2015年   6篇
  2014年   10篇
  2013年   15篇
  2012年   13篇
  2011年   16篇
  2010年   12篇
  2009年   14篇
  2008年   4篇
  2007年   8篇
  2006年   10篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   7篇
  2001年   6篇
  2000年   11篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   5篇
  1982年   4篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有254条查询结果,搜索用时 31 毫秒
11.
The team behind a successful project to broaden the understanding of astrochemistry – Serena Viti, Wendy Brown, Martin McCoustra, Helen Fraser, Nigel Mason and Robert Massey – recount how they went about it and what benefits resulted.  相似文献   
12.
The Permian Cedar Mesa Sandstone of south‐east Utah is a predominantly aeolian succession that exhibits a complex spatial variation in sedimentary architecture which, in terms of palaeogeographic setting, reflects a transition from a dry erg centre, through a water table‐controlled aeolian‐dominated erg margin, to an outer erg margin subject to periodic fluvial incursion. The erg margin succession represents a wet aeolian system, accumulation of which was controlled by progressive water table rise coupled with ongoing dune migration and associated changes in the supply and availability of sediment for aeolian transport. Variation in the level of the water table relative to the depositional surface determined the nature of interdune sedimentary processes, and a range of dry, damp and wet (flooded) interdune elements is recognized. Variations in the geometry of these units reflect the original morphology and the migratory behaviour of spatially isolated dry interdune hollows in the erg centre, locally interconnected damp and/or wet interdune ponds in the aeolian‐dominated erg margin and fully interconnected, fluvially flooded interdune corridors in the outer erg margin. Relationships between aeolian dune and interdune units indicate that dry, damp and wet interdune sedimentation occurred synchronously with aeolian bedform migration. Temporal variation in the rates of water‐table rise and bedform migration determined the angle of climb of the erg margin succession, such that accumulation rates increased during periods of rapidly rising water table, whereas sediment bypassing (zero angle of climb) occurred in the aftermath of flood events in response to periods of elevated but temporarily static water table. During these periods in the outer erg margin, the expansion of fluvially flooded interdunes in front of non‐climbing but migrating dunes resulted in the amalgamation of laterally adjacent interdunes and the generation of regionally extensive bypass (flood) supersurfaces. A spectrum of genetic depositional models is envisaged that accounts for the complex spatial and temporal evolution of the Cedar Mesa erg margin succession.  相似文献   
13.
Hugh Miller was a Victorian geologist and stonemason of humble origins, who did much to further public interest in the new science of geology. His most famous book, The Old Red Sandstone (1841) , ran to many editions, and his discoveries of Devonian fossil fishes were of great importance to science. Despite this, he is a relatively unsung geological hero beyond his native land.  相似文献   
14.
The Himalayan Foreland Basin in the Ganga Valley is key to assessing the pre‐collision relationship between cratonic India and the Himalaya – the world's largest mountain chain. The subsurface Ganga Supergroup, representing the sedimentary basement of the Ganga Valley, has been interpreted as a northern extension of the Proterozoic Vindhyan Supergroup in cratonic India. This interpretation is contentious because the depositional age of the Ganga Supergroup is not resolved: whereas the lower Ganga Supergroup is widely regarded as Proterozoic, the upper Ganga Supergroup has been variously inferred to include Neoproterozoic, lower Palaeozoic, or Cretaceous strata. Here, we integrate biostratigraphic and detrital zircon data from drill cores to show that the entire Ganga Supergroup is likely Proterozoic and can be correlated with Proterozoic successions on the northern Indian craton and in the Lesser Himalaya. This helps redefine the first‐order stratigraphic architecture and indicates broad depositional continuity along the northern Indian margin during the Proterozoic.  相似文献   
15.
This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2 °C, followed by stabilisation to 4 °C.  相似文献   
16.
17.
18.
The gross chemical structures of xylites and gelified soft brown coal woods, Latrobe Valley, Victoria, Australia, as determined by solid state nuclear magnetic resonance spectroscopy, are compared with those of present-day wood-derived materials prepared from an angiosperm, Eucalyptus regnans, and a gymnosperm (conifer), Pinus radiata. Also examined are the changes in the gross chemical structures of soft brown coal woods with increase in their degree of gelification and the relationship between these changes and variations in their chemical composition and microscopic appearance.The Victorian xylites exhibit greater affinities with the present-day gymnosperm than the present-day angiosperm. The progressive removal of cellulose with increasing degree of gelification can be equated with an increase in huminite reflectance, elimination of humotelinite autofluorescence and changes in the relative proportions of the humotelinite submacerals. The lignin structure of xylite is also modified during the gelification process, including the progressive loss of methoxyl groups and evidence of minor oxidation.  相似文献   
19.
20.
Upland gravel-bedded streams in the U.K. have received only scant attention from both hydrologists and sedimentologists, but are worthy of further investigation. The sedimentology of three small streams in Teesdale in the Pennines has been examined in detail. Grain-size characteristics, bedforms, structure, composition and packing characteristics of these deposits are described, and compared where appropriate with published information. It is argued that a fuller appreciation of gravel bed composition and morphology should eventually contribute to an improved understanding of sediment transport and deposition mechanisms, and, hence, to improved accuracy in sediment transport and deposition estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号